Solvability of some integro-differential equations with anomalous diffusion and transport
نویسندگان
چکیده
The article deals with the existence of solutions an integro-differential equation in case anomalous diffusion negative Laplace operator a fractional power presence transport term. proof is based on fixed point technique. Solvability conditions for elliptic operators without Fredholm property unbounded domains are used. We discuss how introduction term impacts regularity solutions.
منابع مشابه
Some Remarks on the Solvability of Some Abstract Differential Equations
This paper is concerned with the solvability of some abstract differential equation of type u̇(t) + Au(t) + Bu(t) ∋ f(t), t ∈ (0, T ], u(0) = 0, where A is a linear selfadjoint operator and B is a nonlinear (possibly multi-valued) maximal monotone operator in a real Hilbert space H with the normalization 0 ∈ B(0). We use the concept of variational sum introduced by H. Attouch, J.-B. Baillon, and...
متن کاملWell-posedness and asymptotics of some nonlinear integro-differential equations
We will prove the well-posedness of certain second order ordinary and partial integro-differential equations with an integral term of the form t ∫ 0 m(φ(t−s))φ̇(s) ds, wherem is given and φ is the solution. The new aspect is the dependence of the kernel on the solution. In addition, for the ordinary integro-differential equation, the asymptotic behaviour of the solution is described for some ker...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Stochastic Homogenization for Some Nonlinear Integro-Differential Equations
In this note we prove the stochastic homogenization for a large class of fully nonlinear elliptic integro-differential equations in stationary ergodic random environments. Such equations include, but are not limited to Bellman equations and the Isaacs equations for the control and differential games of some pure jump processes in a random, rapidly varying environment. The translation invariant ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Analysis and Mathematical Physics
سال: 2021
ISSN: ['1664-2368', '1664-235X']
DOI: https://doi.org/10.1007/s13324-021-00571-8